774 research outputs found

    Derivation of tropospheric methane from TCCON CHâ‚„ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CHâ‚„). Temporal variability in the total column of CHâ‚„ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CHâ‚„ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CHâ‚„ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CHâ‚„ because it is strongly correlated to CHâ‚„ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CHâ‚„ is calculated as a function of the zonal and annual trends in the relationship between CHâ‚„ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CHâ‚„ column averaging kernel to estimate the contribution of stratospheric CHâ‚„ to the total column. The resulting tropospheric CHâ‚„ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere

    Diffuse liver disease classification from ultrasound surface characterization, clinical and laboratorial data

    Get PDF
    In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease

    The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT COâ‚‚ and CHâ‚„ retrieval algorithm products with measurements from the TCCON

    Get PDF
    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO₂, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4–2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH₄, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH₄ precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively

    Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors

    Get PDF
    We demonstrate the feasibility of using optical coherence tomography (OCT) to image and detect 2.8 ?m diameter microparticles (stationary and moving) on a highly-reflective gold surface both in clear media and under skin in vitro. The OCT intensity signal can clearly report the microparticle count, and the OCT response to the number of microparticles shows a good linearity. The detect ability of the intensity change (2.9%�5%) caused by an individual microparticle shows the high sensitivity of monitoring multiple particles using OCT. An optical sensing method based on this feasibility study is described for continuously measuring blood sugar levels in the subcutaneous tissue, and a molecular recognition unit is designed using competitive binding to modulate the number of bound microparticles as a function of glucose concentration. With further development, an ultra-small, implantable sensor might provide high specificity and sensitivity for long-term continuous monitoring of blood glucose concentration

    Drivers of column-average CO_2 variability at Southern Hemispheric Total Carbon Column Observing Network sites

    Get PDF
    We investigate factors that drive the variability in total column CO_2 at the Total Carbon Column Observing Network sites in the Southern Hemisphere using fluxes tagged by process and by source region from the CarbonTracker analysed product as well as the Simple Biosphere model. We show that the terrestrial biosphere is the largest driver of variability in the Southern Hemisphere column CO_2. However, it does not dominate in the same fashion as in the Northern Hemisphere. Local- and hemispheric-scale biomass burning can also play an important role, particularly at the tropical site, Darwin. The magnitude of seasonal variability in the column-average dry-air mole fraction of CO_2, X_CO_2, is also much smaller in the Southern Hemisphere and comparable in magnitude to the annual increase. Comparison of measurements to the model simulations highlights that there is some discrepancy between the two time series, especially in the early part of the Darwin data record. We show that this mismatch is most likely due to erroneously estimated local fluxes in the Australian tropical region, which are associated with enhanced photosynthesis caused by early rainfall during the tropical monsoon season

    Forecasting global atmospheric CO_2

    Get PDF
    A new global atmospheric carbon dioxide (CO_2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO_2 forecasting system is that the land surface, including vegetation CO_2 fluxes, is modelled online within the IFS. Other CO_2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO_2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO_2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO_2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO_2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO_2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO_2 fluxes also lead to accumulating errors in the CO_2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO_2 fluxes compared to total optimized fluxes and the atmospheric CO_2 compared to observations. The largest biases in the atmospheric CO_2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO_2 analyses based on the assimilation of CO_2 products retrieved from satellite measurements and CO_2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO_2 forecast will be reduced. Improvements in the CO_2 forecast are also expected with the continuous developments in the operational IFS

    A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements

    Get PDF
    This study investigates the use of total column CH<sub>4</sub> (<i>X</i>CH<sub>4</sub>) retrievals from the SCIAMACHY satellite instrument for quantifying large-scale emissions of methane. A unique data set from SCIAMACHY is available spanning almost a decade of measurements, covering a period when the global CH<sub>4</sub> growth rate showed a marked transition from stable to increasing mixing ratios. The TM5 4DVAR inverse modelling system has been used to infer CH<sub>4</sub> emissions from a combination of satellite and surface measurements for the period 2003–2010. In contrast to earlier inverse modelling studies, the SCIAMACHY retrievals have been corrected for systematic errors using the TCCON network of ground-based Fourier transform spectrometers. The aim is to further investigate the role of bias correction of satellite data in inversions. Methods for bias correction are discussed, and the sensitivity of the optimized emissions to alternative bias correction functions is quantified. It is found that the use of SCIAMACHY retrievals in TM5 4DVAR increases the estimated inter-annual variability of large-scale fluxes by 22% compared with the use of only surface observations. The difference in global methane emissions between 2-year periods before and after July 2006 is estimated at 27–35 Tg yr<sup>−1</sup>. The use of SCIAMACHY retrievals causes a shift in the emissions from the extra-tropics to the tropics of 50 ± 25 Tg yr<sup>−1</sup>. The large uncertainty in this value arises from the uncertainty in the bias correction functions. Using measurements from the HIPPO and BARCA aircraft campaigns, we show that systematic errors in the SCIAMACHY measurements are a main factor limiting the performance of the inversions. To further constrain tropical emissions of methane using current and future satellite missions, extended validation capabilities in the tropics are of critical importance

    ‘Sons of athelings given to the earth’: Infant Mortality within Anglo-Saxon Mortuary Geography

    Get PDF
    FOR 20 OR MORE YEARS early Anglo-Saxon archaeologists have believed children are underrepresented in the cemetery evidence. They conclude that excavation misses small bones, that previous attitudes to reporting overlook the very young, or that infants and children were buried elsewhere. This is all well and good, but we must be careful of oversimplifying compound social and cultural responses to childhood and infant mortality. Previous approaches have offered methodological quandaries in the face of this under-representation. However, proportionally more infants were placed in large cemeteries and sometimes in specific zones. This trend is statistically significant and is therefore unlikely to result entirely from preservation or excavation problems. Early medieval cemeteries were part of regional mortuary geographies and provided places to stage events that promoted social cohesion across kinship systems extending over tribal territories. This paper argues that patterns in early Anglo-Saxon infant burial were the result of female mobility. Many women probably travelled locally to marry in a union which reinforced existing social networks. For an expectant mother, however, the safest place to give birth was with experience women in her maternal home. Infant identities were affected by personal and legal association with their mother’s parental kindred, so when an infant died in childbirth or months and years later, it was their mother’s identity which dictated burial location. As a result, cemeteries central to tribal identities became places to bury the sons and daughters of a regional tribal aristocracy

    Theory-Based Digital Interventions to Improve Asthma Self-Management Outcomes: Systematic Review

    Get PDF
    BACKGROUND: Asthma is a chronic disease requiring effective self-management to control it and prevent mortality. The use of theory-informed digital interventions promoting asthma self-management is increasing. However, there is limited knowledge concerning how and to what extent psychological theory has been applied to the development of digital interventions, or how using theory impacts outcomes. OBJECTIVE: The study aimed to examine the use and application of theory in the development of digital interventions to enhance asthma self-management and to evaluate the effectiveness of theory-based interventions in improving adherence, self-management, and clinical outcomes. METHODS: Electronic databases (CENTRAL, MEDLINE, EMBASE, and PsycINFO) were searched systematically using predetermined terms. Additional studies were identified by scanning references within relevant studies. Two researchers screened titles and abstracts against predefined inclusion criteria; a third resolved discrepancies. Full-text review was undertaken for relevant studies. Those meeting inclusion criteria were assessed for risk of bias using the Cochrane Collaboration tool. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Study outcomes were classified as medication adherence, self-management, asthma control, clinical markers of health, quality of life, other quality of life outcomes, and health care utilization. Effectiveness was calculated as an average outcome score based on the study's reported significance. The Theory Coding Scheme (TCS) was used to establish the extent to which each intervention had applied theory and which theoretical constructs or behavioral determinants were addressed. Associations between TCS scores and asthma outcomes were described within a narrative synthesis. RESULTS: Fourteen studies evaluating 14 different digital interventions were included in this review. The most commonly cited theories were Social Cognitive Theory, Health Belief Model, and Self-Efficacy Theory. A greater use of theory in the development of interventions was correlated with effective outcomes (r=.657; P=.01): only the 3 studies that met >60% of the different uses of theory assessed by the TCS were effective on all behavioral and clinical outcomes measured. None of the 11 studies that met ≤60% of the TCS criteria were fully effective; however, 3 interventions were partially effective (ie, the intervention had a significant impact on some, but not all, of the outcomes measured). Most studies lacked detail on the theoretical constructs and how they were applied to the development and application of the intervention. CONCLUSIONS: These findings suggest that greater use of theory in the development and application of digital self-management interventions for asthma may increase their effectiveness. The application of theory alone may not be enough to yield a successful intervention, and other factors (eg, the context in which the intervention is used) should be considered. A systematic approach to the use of theory to guide the design, selection, and application of intervention techniques is needed
    • …
    corecore